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Introduction

The basic problem of structural reliability is to
ascertain that the strength R will be larger than the load
(or load effects) S throughout the useful life of the
structure. Due to uncertainties in the determination of
strength and loads, reliability can only be established
in probabilistic terms, i.e., P(R > S). For real structures
this is a complex issue, and as in every complex issue,
guidance is needed in the design process which is
provided through technical standards and codes.

Current design codes and standards (e.g. ASCE-
SEI 7, ACI 318) are based on semi-probabilistic
approaches. While it is agreed that the ideal would be
to design a structure or structural element for a given
probability of failure, the appeal of the semi-probabilistic
approach stems from the coupling of design simplicity
and the implicit incorporation of probabilistic concepts.
While some practitioners understand the advantages
in evolving towards semi-probabilistic code formats, a
large number of structural engineers still see Structural
Reliability as an unnecessary burden.

It is believed that for many engineers, much of
their reluctance in accepting Structural Reliability and
Reliability-Based Design comes from the lack of formal
education in this subject of those professionals. As
such, in this paper, Structural Reliability basics will
be reviewed. Here, the major goal is to introduce this
subject in a language that can be easily understood
by the practit ioner.  Init ially,  the presence of
uncertainties in almost all variables pertaining to the
structural response (materials properties, geometries,
predictive models, loads, etc.) will be discussed. In
the sequence, methods for Reliability Analysis, -
FOSM, FORM, SORM and also Monte Carlo
simulation-, will be briefly presented. A number of
attendant concepts (reliability index, probability of
failure, performance function, design point, etc.) will
be introduced. Levels of reliability methods and their
relationships with current design codes will be
examined. The importance of Structural Reliability
concepts and methods in providing rational tools for
design code development will be demonstrated from
problems of current Structural Engineering practice.

Uncertainties in structural engineering

A number of uncertainties are present in the
structural design problem. These may be related to
inherent variability such as material properties (steel
yield strength, steel ultimate strength, concrete
compressive strength, concrete modulus of elasticity,
etc.), dimensions (beam width and depth, concrete
cover, etc.), loads (dead loads, live loads, wind,
earthquake, etc.) or epistemic uncertainties, i.e., those
related to the lack (or limited) knowledge. In this latter
category are the errors associated to predictive models,
sampling errors, and measurement errors. These errors
may be reduced as more information is gained.

These uncertainties may be modeled as random
variables. In this process, the associated mathematical
models may be obtained from observational data. To
this end, the histogram of the quantity of interest is
plotted and a probability distribution is adjusted either
by inspection or goodness of fit tests [1]. Fig. 1 shows
the histogram and a superimposed Normal probability
distribution (also known as Gauss distribution) for an
8-ksi (56 MPa) concrete. In a more general scenario,
uncertainties are related to either spatial or temporal
variability, or both.

Figure 1 – Histogram of concrete compressive
strength and superimposed normal distribution.
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Figure 2 shows the distribution of wind
pressures over the envelope of a low-rise building
for a given wind direction. In addition, each location
is subjected to temporal variability, i.e., this quantity
is described by a random process. Appropriate random
variables associated to maximum or minimum values
corresponding to the random process at hand may be
obtained (see for instance, [2]).

Figure 2 – Spatial variability of wind pressures
over the envelope of a low-rise building.

Methods for reliability analysis

The basic problem of structural reliability is to
ascertain that the strength R will be larger than the
load (or load effects) S throughout the life of the
structure, i.e., P(R > S). Defining the safety margin as
M = R - S, since R and S are random variables; M is
also a random variable. Failure corresponds to the
condition (M < 0) and the corresponding probability
could  be easi ly computed i f  the probabil i ty
distribution associated to M is known. It can be shown
[1] that for statistically independent R and S following
Normal distributions, M is also normally distributed
with mean Mμ  and standard deviation Mσ :

M R Sμ μ μ= − (1)

2 2
M R Sσ σ σ= + (2)

where Rμ  and Sμ , Sμ  and Sσ  are the mean and
standard deviation of variables R and S, respectively.
In this case the probability of failure, Pf, can be
computed in exact form as

( ) 1 ( )fP β β= Φ − = − Φ (3)

where Φ  is the cumulative distribution of the standard
Normal variable and β , is the ratio:
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From Eq. (4), it is seen that the ratio β  is the
number of standard deviations from the origin to the
mean safety margin, Mμ . Since the larger the β  the

smaller the probability of failure, β  is known as
“reliability index” or “safety index”. The probability
density function (PDF) of the safety margin is
presented in Fig. 3; also shown in this figure is the
failure region (M < 0). A further observation of Eq. (4)
is that in the space of reduced variables XR’ and XM’
(where X’ = (X - μ )/ σ ), β  is the distance from the
origin to the limit condition M = 0.

Figure 3 – (a) pdf of the safety margin M and
failure region (M < 0); (b) geometrical
interpretation of the reliabiliry index.

In a more general problem, R and S, may be
functions of multiple random variables, the basic
variables X1, X2 , ... , Xn. For each set of values of the
basic variables it must be possible to state whether
or not the structure has failed. In order to define the
performance of a structure, a performance function
g(X) = g (X1, X2 , ... , Xn) is used. The limiting
performance requirement may be defined as g(X)= 0
and therefore [g(X) > 0] is the safe state and [g(X) <
0] is the failure state.

Figure 4 shows a limit state function in the
space of reduced variables. For simplicity, only two
variables, X1’ and X2’, are shown in the figure. As
the limit-state surface (or failure surface) moves
farther or closer to the origin, the safe region
g (X)>0,  increases  or  decreases  accordingly.
Therefore, a measure of the reliability of the system
may be taken as the minimum distance from the
origin of the reduced variables to the failure surface.
The point xi’

* (x1’*, x2’*, …., xn’*) corresponding to
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this minimum distance is known as the “most
probable failure point” (or “design point”). This
minimum distance, which is the reliability index , may
be found through an optimization procedure which
minimizes the distance D subjected to g(X)=0 (i.e.,
the design point belongs to the failure surface).
Using the method of Lagrange multipliers it can be
shown that, for uncorrelated variables, the reliability
index  is given by
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where ( '
ig X )* are the partial derivatives evaluated

at the design point. Since the design point is not known
a priori, an iterative procedure may be used to compute
the reliability index . It can be shown that the
computation of the reliability index through Eq. (5) is
equivalent to the linearization of the performance
function (i.e., first order expansion in a Taylor series)
at the design point [3].

 Figure 4 – Failure surface, minimum distance,
reliability index, most probable failure point and

first order approximation.

In the aforementioned procedure, the reliability
index may be computed solely on information of the
means and standard deviations of the basic variables.
As such, this approach is known as “First Order
Second Moment Method” (FOSM). If the probability
distributions of all basic variables are known, then
the probability of failure may be computed as

fP .  This procedure is consistent with
uncorrelated Normal variables. For correlated and/or
nonNormal variables a more involved process is
required in the computation of  (see [3], [4]). In the
literature this latter approach is known as “First Order
Reliability Method” (FORM).

The linear approximation of nonlinear
performance functions is equivalent to replacing an n-
dimensional failure surface (a hyper-surface) with a
hyper-plane tangent to the failure surface at the most
probable failure point. As it can be seen in Fig. 4, this
changes the boundary between the safe and the failure
state. The reliability estimated on the basis of this
approximation will be on the conservative or
unconservative side depending on whether the actual
failure surface is convex or concave toward the origin
of reduced variables [3]. Improved estimates may be
obtained by including second order terms in the Taylor
series expansion of the performance function. This
approach is known as “Second Order Reliability
Method” (SORM).

I t  should be observed that  for  l inear
performance functions, i.e.,

g(X) = 0
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the reliability index obtained from Eq. (5) is
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In this case no approximation is required in the
computation of the minimum distance. Furthermore, if
the basic variables follow Normal distributions, Pf =

 (- ), which means that the computed probability of
failure is “exact” (in a mathematical sense). Also, it
can be seen that Eq. (7) is a generalization of Eq. (4).

Monte Carlo Simulation

Monte Carlo Simulation involves repeating a
simulation process, using in each simulation a particular
set of values of the random variables generated in
accordance with the corresponding probability
distributions. By repeating the process, a sample of
realizations, each corresponding to a different set of
values of the random variables, is obtained. A sample
from a Monte Carlo Simulation is similar to a sample of
experimental observations [3]. Two items are required
for a Monte Carlo Simulation: (1) a deterministic
relation to describe the response of the structure, and
(2) the probability distributions of all variables
involved in calculation of the response. A key task in
the Monte Carlo simulation is the generation of
appropriate values of the random variables (i.e.,
random numbers). Procedures for the generation of
random numbers are presented elsewhere [3].
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The use of Monte Carlo simulation in the
evaluation of structural performance may be twofold:

• computing the statistics (mean, standard
deviation, and type of distribution) of the
system response. In this case, first a sample
of the structure response is obtained, then
a probability distribution is fitted to the
sample data and the distribution parameters
are estimated;

• computing the probability of unsatisfactory
performance of the structure. In this case, a
performance function is established and a
sample of the possible outcomes is simulated.
The number of unsatisfactory performances
is counted, and the probability of failure is
obtained by the rate of unsatisfactory
performances.

Example
Let’s consider a beam, where the random

variables are the yield stress Y, the plastic modulus Z,
and the bending moment M. It is assumed that the

probability distributions of Y, Z and M are Normal with
parameters  and , i.e., Y: N ( Y = 10, Y = 0.8);
Z: N ( Z = 10, Z = 0.4); M: N ( M = 50, M = 10) in
the corresponding units.

The performance function can be written as

g (X) = Y Z – M (8)

The computation of the probability of failure
via Monte Carlo simulation is performed through the
following steps:

1) Generation of random numbers for Y, Z and
M. The histograms corresponding to samples
of 100,000 realizations of Y, Z and M are shown
in Fig 5. This can be easily performed using
available commercial softwares;

2) A value for each random variable is extracted
from the corresponding sample. These
values are used in g(X). This process is
illustrated in Fig. 6;

3) The number of realizations in which the
safe state g(X) > 0 is violated is counted;

Figure 5 – Histograms of y, z, and m and superimposed probability density functions.

Figure 6 – Histograms of y z - m and evaluation of the performance function.
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4) For example, if g(X) < 0 is violated twice in
100,000 realizations, then Pf = 2 /100,000=
2 x 10-5.

As it can be seen, the so called “Crude Monte
Carlo Simulation” is very simple. The accuracy of the
results depends on the number of simulations
performed, converging to the “exact” results as the
sample size increases to infinite. In the above example,
the computed probabilities of failure are 10-3, 2 x 10-5,
7.2 x 10-5 and 8.01 x 10-5, for samples of 104, 105, 106,
and 107 realizations, respectively. As such, a major
drawback in this procedure is the need of large samples
for the cases where small probabilities of failure are
involved. In these cases more efficient procedures
such as Importance Sampling may be used [4]. Also,
efficiency is needed when the performance of the
structure is established in terms of a numerical
procedure (e.g., the Finite Element Method) rather than
a single equation.

Levels of reliability methods

The great variety of idealizations in reliability
models of structures, and the numerous ways in which
it is possible to combine these idealizations to suit a
particular problem, make it desirable to have a
classification. Reliability methods are divided into
levels, characterized by the extent of information about
the structural problem that is used and provided [5]:

• Level 0: methods that use the allowable
stress design format;
• Level 1: methods that employ only one
“characteristic” value of each uncertain
parameter (also known as semi-probabilistic
methods). Load and resistance factor formats
are examples of level 1 methods;
• Level 2: methods that employ two values
of each uncertain parameter (commonly mean
and variance), supplemented with a measure
of the correlation between the parameters
(usually covariance). These methods use the
reliabili ty index as a reference and are
consistent with FOSM;
• Level 3: methods that employ probability
of failure as a measure, and which therefore
require the knowledge of the probability
distribution of all uncertain parameters. These
methods are consistent with FORM (or SORM)
and Monte Carlo Simulation.
• Level 4: methods that explicitly account for
risks (i.e., the product of probabilities of failure

and consequences for all potential failure
modes) in the assessment of life-cycle costs.
The goal is the “Minimization of Life-Cycle
Costs” or “Maximization of Net Benefits”.

Applications

The last years have witnessed a steady
evolution of design codes towards a better treatment
of the uncertainties in the structural design problem.
In this section, different possibilities for the utilization
of Structural Reliability Methods in the development
of design codes are presented. Nowadays it is
imperative to consider all phases in the life of a
structure (design,  construction, inspection,
maintenance, health monitoring, and rehabilitation),
which requires implementation of probabilistic
methods. As such, examples pertaining to some of these
phases and the corresponding implications in the
codification process are treated herein: code
calibration, new materials, safety evaluation of existing
structures, probabilistic design and life cycle methods.

Code Calibration

Current design codes and standards (e.g.
ASCE-SEI 7, ACI 318, and Eurocodes) are based on
semi-probabilistic approaches, i.e., level 1 methods.
The rationale of a reliability method is a justification
in terms of a higher level. Thus a level 1 method may
be justified on level 2, in that it provides a reliability
index that in some sense is close to a target value. A
level 1 method may also be justified on level 3, in that
it provides a probability of failure close to a target
value. The parameters in the level 1 method (load and
resistance factors) are then calibrated to resemble the
selected higher level.

Code calibration usually involves a number of
tasks (see for instance [6], [7], and [8]). A main problem
in the calibration procedure is the selection of the
target reliability index (or the target probability of
failure). This has to be dealt within the context of risk
acceptance criteria. A common approach is to base
this decision on the values provided by current
practice. Additionally, it should be emphasized that
probabilistic methods incorporated in design codes
are usually made via component reliability (beams,
columns, slabs, etc. and single failure modes, e.g.
shear, flexure, etc.) and not system reliability. The
consequences of failure, which is a function of the
importance of the component to structural integrity
and the failure mode (ductile or fragile), may be dealt
with by adopting different target values for different
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components (e.g. beams and columns) and different
failure modes (e.g. flexure and shear).

New Materials

In the last decades, a number of new materials
have caught the attention of the civil engineering
community. While dealing with traditional materials,
design guidelines have been based on several years of
past experience. On the other hand, new materials, –
and pertinent new concerns –, require new approaches
in establishing the needed design guidelines. Structural
Reliability methods provide powerful tools in the
treatment of these problems.

In the case of high-strength concrete (HSC),
the author has conducted an extensive research on
the reliability of HSC columns ([9], [10], [11]).
Regarding FRP, much still has to be done in the
implementation of load and resistance factor
procedures for FRP structures. For instance, the use
of FRP bars as internal reinforcement in concrete
structures is a promising alternative to steel bars.
However,  the mechanical  behavior  of  FRP
reinforcement differs from the behavior of steel
reinforcement. While a ductile failure may be obtained
in under-reinforced beams (steel bars), a brittle failure
is unavoidable in FRP reinforced concrete (FRP-RC)
beams. Therefore, the design of FRP-RC components
demands a change in design philosophy. Due to the
type of failure and increasing interest in FRP-RC
structures, code provisions for the design of such
structures, – in line with current reliability methods
and tailored to the specificities of the materials
involved –, shall be developed. The reliability
assessment of FRP-RC beams is presented in [12]. In
that work, the influence of concrete compressive
strength, type of FRP bar, longitudinal reinforcement
ratio, and load ratio in the resulting reliability levels
are investigated.

Safety Evaluation of Existing Structures

Both developed and developing countries
currently face the problem of managing an aging
infrastructure. For instance, the 2005 ASCE Report
Card for America’s Infrastructure presents the figure
of 27.1% of the 590,750 bridges in the USA as
structurally deficient or functionally obsolete. As
such, appropriate tools are required for the treatment
of this problem.

The safety evaluation of existing structures is
distinct from that related to the safety implementation
in the design of new ones. While design codes for
new structures allow for uncertainties in the design

and construction processes, much of what was
initially uncertain are no longer in the finished
structure [4]. However, the determination of the actual
values of various parameters (e .g., in situ concrete
compressive s trengths ,  concrete modulus of
elasticity, etc.) in the existing structure introduces
uncertainty of its own. Additionally, the structure may
have undergone a deterioration process such as
corrosion or fatigue; therefore, realistic structural
performance can be established in probabilistic terms
only. A question of utmost importance is the definition
of criteria for the assessment of the service life of a
given structure. Conservatism in the design of a new
structure implies a small penalty in the costs; on the
other hand, conservatism in the acceptance criteria
for the existing structure may result in major impacts
such as demolitions, extensive repairs, losses in the
commercial activities, etc.

Probabilistic Design

For a given structural component and a given
failure mode, code calibration of a semi-probabilistic
method aims to achieve a uniform reliability. However,
as pointed out in [13] the reliability analyses of the
structures designed according to those codes reveal
a fairly wide scatter. Even in the case of fully calibrated
codes the limitations of the semi-probabilistic
approach will always give rise to fluctuations in the
corresponding probabilities of failure (or reliability
indices). These problems can be circumvented by
using probabilistic design. A probabilistic design
code is currently under development by the Joint
Committee on Structural Safety (JCSS). A draft of the
“JCSS Probabilistic Model Code” is found at the site
www.jcss.ethz.ch. It is expected that such a code will
give guidance to researchers and engineers willing
to perform a full probabilistic analysis and design of
important structures.

Life Cycle Methods

The quest for a sustainable built environment
has shifted the focus from costs incurred at erection
time to all those incurred throughout the useful life of
the structure. The life cycle cost analysis involves the
estimation of initial, inspection, maintenance, and
failure costs (among others).  This in its turn
encompasses the challenges related to systems
reliability, time-dependent reliability (deterioration
modeling and stochastic modeling of loads), structural
health monitoring (inspection, maintenance, and
repair), condition assessment of existing and retrofitted
structures, and optimization. As aforementioned, the
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goal is this case may be “Minimization of Life-Cycle
Costs” or “Maximization of Net Benefits”. Since costs
(and benefits) are incurred at different times they must
be discounted to present time.

In these methods, the problem is treated in a
rigorous and holistic manner. However, a number of
problems must be dealt with: (i) the decision regarding
the discount rate to be used in the analysis; (ii) the
selection of the type of inspection to be considered, –
constant or variable intervals –; (iii) the definition of
the type of repair to be made; (iv) how to handle costs
associated to the loss of human lives; (v) the estimation
of probabilities of failure associated to all potential
failure modes. In spite of the greater complexity
embodied in these methods, they have been used in
real problems such as the definition of strategies for
bridge maintenance [14]. Additionally, it is expected
that optimized designs may drastically reduce
operational costs of the infrastructure [15].

Conclusions

The unprecedented development of
computational capabilities, the increasingly available
databases on materials and loads variability, the
development of new sensor technologies, the use of
new materials, the new level of maturity of probabilistic
methods, and the many advances in the field of
structural mechanics have paved the way for a more
prominent role of Structural Reliability Methods as
rational tools for design codes development. In this
work, different alternatives for the incorporation of
probabilistic methods in design codes have been
reviewed. It is hoped that this may foster the
understanding of this subject by the practitioners in
the area of Structural Engineering.
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