Comparação Entre os Métodos de Dimensionamento de Perfis de Aço Formados a Frio Submetidos à Compressão de Acordo com a NBR 14762:2010

Amanda Isabela de Campos¹

Resumo

A NBR 14762 (ABNT, 2010) aborda informações fundamentais de dimensionamento de perfis de aco formados a frio, conhecidos como PFF, para as seções mais usuais encontradas no mercado. Dessa forma nesse trabalho foi desenvolvido um algoritmo que automatiza o dimensionamento de colunas de aço formados a frio submetidas a compressão centrada, de acordo com os dois métodos apresentados na norma (o método clássico, já validado e semelhante ao dimensionamento de perfis de aço laminados e o método da rigidez direta (MRD), que é um procedimento mais recente incorporado nas normas e se difere dos demais pela sua simplicidade, facilidade e flexibilidade no dimensionamento dos PFF passando pela determinação das tensões críticas de flambagem elástica (global, local e distorcional) do perfil. Nesse trabalho como exemplo foram calculadas, com as duas diferentes abordagens e comparadas, as cargas críticas e resistência à compressão de 20 perfis do tipo U enrijecido, cujas dimensões são encontradas em tabelas de fabricantes. O método da resistência direta garante que após determinadas as forças críticas de flambagem elástica da seção (local, global e distorcional) e o carregamento que ocorre o escoamento da seção, a resistência do perfil pode ser diretamente determinada. Nesse trabalho foi utilizado como ferramenta auxiliar para o cálculo numérico de determinação das forças críticas de flambagem o programa livre e gratuito GBTul. E por fim a comprovação de que o método da resistência direta apresentado no Anexo C da norma é a uma ferramenta simples e de bons resultados na determinação da resistência à compressão de colunas. Portanto, a utilização do algoritmo proposto torna eficaz, segura e precisa a determinação da resistência de cálculo dos elementos de perfis de aço formado a frio, desta maneira, tornando mais confiável e econômico o trabalho do engenheiro projetista.

Palavras-chave: Dimensionamento, perfis de aço formados a frio, método da resistência direta.

1 Introdução

Os perfis formados a frio (PFF) são uma interessante opção para a construção civil uma vez que possuem um processo de fácil fabricação, resultando em peças leves e baratas. Em geral são constituídos por seções abertas de paredes delgadas de chapas finas de aço laminadas à frio ou a quente, que são posteriormente dobradas resultando em elevadas relações largura/ espessura dos elementos (CHODRAUI, 2006).

Devido a forma de fabricação os perfis formados à frio quando aplicados como colunas geram estruturas leves e esbeltas, isso pode ser uma vantagem do ponto de vista estático, porém um problema do ponto de vista estrutural uma vez que colunas esbeltas submetidas à compressão possibilitam a ocorrência de fenômenos de instabilidade global (onde a peça toda sofre flambagem), ou local (problema de instabilidade da chapa) ou distorção da seção transversal (SCHAFER, 2001). Esses são os chamados modos de flambagem e a NBR indica diretrizes para dimensionamento de perfis de aço formados à frio na compressão evitando a ocorrências desses fenômenos, isolados ou combinados.

A ocorrência de fenômenos de flambagem está diretamente relacionada com o formato e dimensões da seção transversal, o comprimento da coluna e as propriedades do aço. Na figura 1 está indicado a nomenclatura adotada para as dimensões de um perfil U enrijecido.

¹ Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil, amanda.campos@coc.ufrj.br

Figura 1 – Típico perfil U enrijecido.

Nesse trabalho será realizado um estudo do comportamento estrutural de 20 colunas formadas a partir de seções U enrijecido sujeitas a compressão axial, o objetivo é calcular a resistência final da coluna pelo método normativo e pelo método da resistência direta (MRD) com o auxílio da ferramenta numérica baseada na *"Genereralised Beam Theory"*. Dessa forma serão comparados os resultados obtidos por duas abordagens e comprovado que ambas coincidem nos mesmos valores.

A Norma ABNT NBR 6355:2012 – "Perfis Estruturais de Aço Formados a Frio – Padronização" estabelece os requisitos exigíveis para perfis estruturais de aço formados a frio, com seção transversal aberta, determinando dimensões e propriedades geométricas de perfis usuais no mercado. Nesse trabalho foram tomados como exemplo 20 desses perfis, suas dimensões estão indicadas na Tabela 1 e as propriedades geométricas necessárias para o dimensionamento estão na Tabela 2.

1.1 Definição da propriedades geométricas da seção transversal

Como dito, as propriedades geométricas utilizadas nos cálculos foram obtidas por norma, e a terminologia empregada segue essa norma, portanto, alguns símbolos e seus respectivos significados precisam ser definidos, são eles:

A – área da seção

E - módulo de elasticidade: E = 200 GPa;

 f_v – limite de escoamento: f_v = 345 MPa;

v – coeficiente de Poisson: v = 0.3;

 I_x , I_y – momentos de inércia da seção bruta em relação aos eixos principais x e y, respectivamente;

 X_{g}, Y_{g} – centro de massa;

Seção	$b_w(\text{mm})$	$b_f(mm)$	<i>D</i> (mm)	<i>t</i> (mm)	Área (cm ²)
1	300	100	25	2,65	14,11
2	300	85	25	4,75	23,22
3	300	85	25	2	10,14
4	250	100	25	3	14,41
5	250	85	25	2	9,14
6	200	100	25	2,65	11,46
7	200	75	25	4,75	14,52
8	200	75	25	2,65	10,14
9	200	75	20	2	7,54
10	150	60	20	3,35	9,65
11	150	60	20	2	5,94
12	125	50	17	3	7,18
13	125	50	17	2	4,92
14	100	50	17	3	6,43
15	100	50	17	1,2	2,71
16	100	40	17	2	4,02
17	100	40	17	1,2	2,47
18	75	40	15	3	4,96
19	75	40	15	1,2	2,13
20	50	25	10	1,2	1,35

Tabela 1 – Dimensões das Seções transversais

 r_x , r_y – raio de giração da seção bruta em relação ao eixo principal x e y, respectivamente;

 x_0 – distância do centro de torção ao centróide, na direção do eixo x;

 r_0 – raio de giração polar da seção bruta em relação ao centro de torção;

J – constante de torção da seção;

G – módulo de elasticidade transversal;

 C_{w} – constante de empenamento da seção;

 $K_x L_x$, $K_y L_y$ – comprimento efetivo de flambagem, nesse trabalho considerado igual ao comprimento da barra.

2 Fundamentação Teórica

2.1 Instabilidade Global e Distorcional

Em 1759, Euler propôs uma equação para o cálculo da força normal crítica de flambagem elástica de barras submetidas à compressão. Segundo GARCIA (2016) a carga crítica ou ponto crítico que ocorre a flambagem, depende das dimensões da seção da barra, do tipo de vinculação e do comprimento livre. E sabe-se que encontrar a carga crítica está diretamente

Tabela 2 – Propriedades	geométricas o	las seções
-------------------------	---------------	------------

relacionado com a estabilidade da estrutura e seu equilíbrio.

Dessa forma pode-se afirmar que a carga critica indica um ponto de transição entre o equilíbrio estável e instável da estrutura. A carga crítica de Euler P_E calculada com a equação (1) representa a menor carga que gera uma mudança no estado de equilíbrio da coluna idealizada (IYENGAR, 1986).

$$P_E = \frac{\pi^2 EI}{L^2} \tag{1}$$

2.1 Instabilidade Global

Um perfil monossimetrico do tipo U enrijecido pode sofrer flambagem global por flexão, em torno do eixo perpendicular ao de simetria, de acordo com a formulação de flambagem elástica proposta por Euler (Equação 1) ou por flexo-torção (flexão em torno do eixo de simetria e rotação em torno do centro de torção). A flambagem por flexo-torção ocorre quando uma coluna ao ser carregada com uma força de compressão no centro de gravidade da seção, para o caso do perfil U enrijecido o centro de torção e o centro de gravidade estão localizados em pontos diferentes o

Seção	I_x (cm ⁴)	r_x (cm)	Xg (cm)	X_0 (cm)	I_y (cm ⁴)	$r_{y}(\mathrm{cm})$	C_w (cm ⁶)	$r_0(\mathrm{cm})$
1	1920,58	11,67	2,72	6,79	178,97	3,56	32115,67	13,96
2	2959,01	11,29	2,2	5,33	193,55	2,89	35606,89	12,82
3	1339,09	11,49	2,2	5,64	93,89	3,04	17055,02	13,16
4	1408,08	9,89	2,98	7,25	188,58	3,62	24048,03	12,78
5	871,52	9,77	2,43	6,09	88,98	3,12	11477,06	11,93
6	750,68	8,09	3,31	7,89	157,2	3,7	13447,29	11,89
7	1036,95	7,69	2,32	5,42	124,95	2,67	10910,56	9,79
8	621,67	7,83	2,33	5,67	78,69	2,79	6862,49	10,06
9	467,42	7,88	2,2	5,42	56,3	2,73	4615,39	9,94
10	327,7	5,83	1,92	4,5	45,65	2,18	2275,9	7,68
11	207,59	5,91	1,93	4,66	30,02	2,25	1498,57	7,86
12	168,35	4,84	1,61	3,75	23,44	1,81	817,11	6,39
13	118,35	4,91	1,61	3,87	17,04	1,86	594,42	6,52
14	99,3	3,93	1,78	4,06	21,66	1,84	521	5,94
15	44,15	4,03	1,79	4,28	10,12	1,93	246,61	6,91
16	60,66	3,89	1,38	3,27	9,25	1,52	227,57	5,3
17	38,29	3,93	1,38	3,36	6,01	1,56	148,49	5,41
18	42,08	2,91	1,5	3,34	10,58	1,46	155,27	4,67
19	19,32	3,02	1,51	3,56	5,14	1,55	76,95	4,92
20	5,24	1,97	0,93	2,17	1,23	0,95	8,13	3,08

que gera deslocamentos em forma de flexão e torção, neste caso diz que essa barra sofreu flambagem por flexo-torção.

2.2 Instabilidade Distorcional

A instabilidade distorcional está relacionada com a distorção da seção transversal, ou seja, com a flexão de um ou mais elementos acompanhados pelo deslocamento das arestas que ligam esses elementos, ao contrário da flambagem local onde as arestas não se deslocam (HANCOCK, 2003), um esquema de seções do tipo U enrijecido nesses modos de flambagem pode ser observado na Figura 2. As principais teorias já consolidadas para análise de instabilidade distorcional são o Método dos Elementos Finitos (MEF), o Método das Faixas Finitas (MFF) e a Teoria Generalizada de Viga (GBT) – desenvolvido por Silvestre e Camotim (2004), (BEBIANO *et. al.*, 2010).

3 Dimensionamento de Colunas Sob Compressão

A norma ABNT NBR 14762:2010 indica o procedimento de dimensionamento de barras submetidas à força axial de compressão utilizando o chamado método das seções efetivas. As equações a seguir resumem a formulação recomendada por norma. O dimensionamento, como nos principais casos de engenharia, é baseado na condição das forças resistentes de cálculo serem maiores ou iguais que as forças solicitantes

$$N_{c,Sd} \le N_{c,Rd} \tag{2}$$

3.1 Flambagem Global por Flexão, por Torção ou por Flexo-torção

$$N_{c,Rd} = \chi A_{ef} f_y / \gamma \qquad (\gamma = 1, 20)$$
(3)

Para
$$\lambda_0 \leq 1.5$$
: $\chi = 0.658^{\lambda_0^2}$, onde $\lambda_0 = \left(\frac{Af_y}{N_e}\right)^{0.5}$ (4)

Para
$$\lambda_0 \le 1.5$$
: $\chi = \frac{0.877}{\lambda_0^2}$ (5)

Para perfis monossimétricos, como é o caso do tipo U enrijecido, no problema de compressão axial a norma NBR 14762:2010 indica que a força axial de flambagem global elástica N_e é o menor valor entre os obtidos em a) e b).

 a) Força axial de flambagem global elástica por flexão em relação ao eixo principal y:

$$N_{ey} = \frac{\pi^2 E I_y}{\left(K_y L_y\right)^2} \tag{6}$$

 b) Força axial de flambagem global elástica por flexo-torção:

$$N_{exz} = \frac{N_{ex} + N_{ez}}{2\left[1 - (x_0/r_0)^2\right]} \left[1 - \sqrt{1 - \frac{4N_{ex}N_{ez}\left[1 - (x_0/r_0)^2\right]}{(N_{ex} + N_{ez})^2}}\right]$$
(7)

onde a Força axial de flambagem global elástica por flexão em relação ao eixo principal *x*

$$N_{ex} = \frac{\pi^2 E I_x}{\left(K_x L_x\right)^2} \tag{8}$$

Força axial de flambagem global elástica dada por torção:

$$N_{ez} = \frac{1}{r_0^2} \left[\frac{\pi^2 E C_w}{\left(K_z L_z\right)^2} + GJ \right]$$
(9)

3.1.1 Método da seção efetiva para cálculo da área efetiva (Aef)

$$A_{ef} = A \text{ para } \lambda_p \le 0,776 \tag{10}$$

$$A_{ef} = A \left(1 - \frac{0,15}{\lambda_p^{0,8}} \right) \frac{1}{\lambda_p^{0,8}} \text{ para } \lambda_p > 0,776 \quad (11)$$

$$\lambda_p = \left(\frac{\chi A f_y}{N_l}\right)^{0,5}, \text{ onde}$$

$$N_l = k_l \frac{\pi^2 E}{12(1-\nu^2)(b_w/t)^2} A$$
(12)

Os valores de k_l (coeficiente de flambagem local) para uma seção U enrijecido

$$k_l = 6, 8 - 5, 8\eta + 9, 2\eta^2 - 6, 0\eta^3$$
, onde
 $\eta = b_f / b_w$
(13)

3.2 Flambagem distorcional

$$N_{c,Rd} = \chi_{dist} A f_y / \gamma \quad (y = 1,20)$$
(14)

onde $\chi_{dist} = 1$ para $\lambda_{dist} \le 0,561$ (15)

$$\chi_{dist} = \left(1 - \frac{0,25}{\lambda_{dist}^{1,2}}\right) \frac{1}{\lambda_{dist}^{1,2}} \text{ para } \lambda_{dist} > 0,561$$
(16)

onde $\lambda_{dist} = \left(\frac{Af_y}{N_{dist}}\right)^{0.5}$

Sendo N_{dist} força axial de flambagem elástica obtida com uma análise de estabilidade elástica.

3.3 Método da Resistência Direta

O método exposto anteriormente consiste em determinar a resistência de um perfil a partir do cálculo das propriedades geométricas efetivas de uma seção, o que pode ser considerado um processo trabalhoso, então SCHAFER e PEKÖZ (1998) propuseram o Método da Resistência Direta (MRD) como uma alternativa ao método das larguras efetivas.

O chamado Método da Resistencia Direta presente no anexo C da Norma NBR 14762:2010, corresponde a uma alternativa para o dimensionamento, utilizando as propriedades da seção bruta. Porém uma análise elástica com ferramentas numéricas é necessária, para isso nesse trabalho será utilizado o *GBTul*. O programa *GBTul* desenvolvido no Instituto Superior Técnico de Lisboa (2000) realiza a análises de flambagem elástica de perfis de aço formados a frio a partir do método GBT (*Generalised Beam Theory*). É disponível gratuitamente no site do grupo de pesquisa e é uma poderosa ferramenta na obtenção de tensões de flambagem elástica para barras de perfis formados a frio.

A Figura 2 apresenta um típico resultado de análise de estabilidade elástica de um perfil U enrijecido que é um gráfico relacionando o comprimento do perfil e sua carga crítica. Nota-se que o primeiro ramo do gráfico é referente a flambagem local e o segundo ramo corresponde ao modo distorcional, e por fim o terceiro ramo corresponde a flambagem global. Os valores mínimos serão então multiplicados pela tensão de escoamento do material resultando nas tensões de flambagem elástica de cada modo. Esse tipo de gráfico é conhecido na literatura como "Curva de assinatura" e é o que será retirado como resultado no programa *GBTul* para cálculo da resistência dos perfis.

Figura 2 – Exemplo de curva de assinatura para perfil U enrijecido. Fonte GARCIA (2015).

As tensões críticas são obtidas nos pontos de mínimo da curva dado pelo programa para cada modo (local $N_{\rm l}$, distorcional N_{dist} e global N_{e}), estes resultados para as seções de estudo estão indicados na Tabela 3. O programa divide os modos de flambagem em números onde, os primeiros quatro modos representam os modos globais caracterizados pelo movimento de corpo rígido da seção, os modos 5 e 6 são distorcionais e todos os outros são modos locais de placa. Esses resultados representam a carga crítica em cada modo, ou seja, a partir dessa determinada carga a coluna entram em instabilidade.

3.5. O Algoritmo

De posse dos resultados da Tabela 3 é possível calcular a resistência à compressão de cada perfil pelo método da resistência direta e comparar com o cálculo

	Modos Globais	Modos Locais	Modos Distorcionais
Seção	N _e	N ₁	N _{dist}
Seção 1	3401,8513	118,0790	262,7628
Seção 2	4858,4028	655,4768	1100,4144
Seção 3	2030,7036	48,9290	139,3280
Seção 4	3028,0222	218,4573	404,3616
Seção 5	1645,3640	61,9339	169,3014
Seção 6	1903,3678	207,1366	341,8558
Seção 7	2599,8079	1097,4710	1412,4363
Seção 8	1413,0824	190,5679	419,7442
Seção 9	957,5920	79,8373	196,5456
Seção 10	503,3730	111,6701	238,3044
Seção 11	503,3730	111,6701	238,3044
Seção 12	469,6112	452,9629	589,3253
Seção 13	300,3203	136,1154	232,4302
Seção 14	349,1937	671,8038	638,0743
Seção 15	127,4611	42,9954	90,2260
Seção 16	182,4920	189,1732	288,0149
Seção 17	104,3751	40,8614	91,1715
Seção 18	196,7549	1159,3727	720,7528
Seção 19	64,3887	73,3304	97,1372
Seção 20	21,7188	186,7257	104,6128

Tabela 3 – Forças axiais de compressão obtidas com o (Valores em kN)

```
#Força axial de flambagem global elástica por flexão em relação ao eixo x:
Nex = (math.pi)**2 * E * I2 / (Kx * Lx)**2 *10**-6 ##kN
#Força axial de flambagem global elástica por flexão em relação ao eixo y
Ney = (math.pi)**2 * E * II / (Ky * Ly)**2 *10**-6 ##kN
#Força axial de flambagem global elástica por torção
rx = math.sqrt(Ix/A)
ry = math.sqrt(Iy/A)
x0 = np.abs(XPP)
kz=1.
#x0 = (21.955967741521288)
r0 = math.sqrt(rx**2 + ry**2 + x0**2 )
Nez = 1/(r0**2)*(((math.pi)**2 * E * IWW)/((Kz*Lz)**2)) *10**-6 ##kN
Nez = Nez +G^{*}J/(r0^{**}2)
#Força axial de flambagem global elástica por flexo-torção:
Nexz = (Nex + Nez)/ (2*(1-(x0/r0)**2))*(1-math.sqrt(1-
                            -(4*Nex*Nez*(1-(x0/r0)**2))/((Nex+Nez)**2)))
#Força axial de flambagem global elástica Ne
Ne = min(Ney,Nexz)
#Força axial de compressão resistente de cálculo Nc,Rd:
    #Índice de esbeltez reduzido associado à flambagem global:
10 = math.sqrt(A*fy/(Ne*10**3))
print(10)
#Fator de redução da força axial de compressão resistente:
if (10<=1.5):
     X = 0.658**(10)**2
if (10>1.5):
    X = 0.877/(10)**2
#Área efetiva da seção transversal da barra:
    #no método da seção efetiva (MSE)
#Coeficiente de flambagem local:
n = bf/bw
if (bl == 0):
```

realizado utilizando as indicações da norma, para automatizar todos esses cálculos foi implementado um algoritmo na lin guagem de programação gratuita *Python*, definindo assim um algoritmo de sintaxe simples e direta e por fim estão a comparação entre todos os resultados. A parte principal do algoritmo está reproduzida a seguir, para funcionar uma leitura de propriedades geométricas da seção é feita inicialmente.

```
kl = 4 + 3.4*n+21.8*n**2-174.3*n**3+319.9*n**4-237.6*n**5+63.6*n**6
    if ((n<0.1) | (n>1.0)):
        print("ERRO")
        arq.close()
if (bl != 0):
    kl = 6.8-5.8*n+9.2*n**2-6*n**3
    if ((n<0.1) | (n>1.0)):
        if ((bl/bw<0.1) | (bl/bw>0.3)):
            print("ERRO")
            arg.close()
#Força axial de flambagem local elástica:
Nl = kl* (math.pi)**2 * E / (12*(1-v**2)*(bw/t)**2)*A #kN
lp = math.sqrt(X*A*fy/(Nl*10**3))
if (lp<=0.776):
    Aef = A
if (lp>0.776):
    Aef = A*(1-0.15/lp**0.8)*(1/lp**0.8) #mm<sup>2</sup>
#Força axial de compressão resistente de cálculo:
Nc Rd = X*Aef*fy/1.2 * 10**-3 #kN
#Método da resistência direta:
#- Flambagem global da barra por flexão, torção ou flexo-torção #<mark>GBTul</mark>
Ne= 182.4920
Nl= 189.1732
Ndist=288.0149
10 = math.sqrt(A*fy/(Ne*10**3))
if (10<=1.5):
    X = 0.658^{**}(10)^{**2}
if (10>1.5):
    X = 0.877/(10)**2
Nc Re = X*A*fv * 10**-3 #kN
#
     Flambagem local #GBTul
11 = (Nc_Re/N1)**0.5
if (11<=0.776):
    Nc_Rl = Nc_Re
if (11>0.776):
    Nc_Rl = (1 - (0.15/(ll**0.8)))*(Nc_Re/(ll**0.8))
#
   Flambagem distorcional
                              #GBTul
ldist = math.sqrt(A*fy/(Ndist*10**3))
if (ldist <= 0.561):
    Nc Rdist = A*fy * 10**-3 #kN
if (ldist > 0.561):
    Nc_Rdist = (A*fy /ldist**1.2)*(1-0.25/(ldist**1.2))*10**-3
Nc_Rk = min(Nc_Re,Nc_Rl,Nc_Rdist)
arg.close()
```

		Modo 2	Modo 3	Modo 4	Modos 2 e 4
		N _{ex}	N _{ey}	N_{ez}	N _{exz}
	Norma	40223,1358	3962,3964	3477,3016	3399,4670
Seção 1	GBTul	40267,6330	3963,9733	3479,2924	3401,8513
	Diferença	0,11%	0,04%	0,06%	0,07%
	Norma	65850,7357	4857,7923	4964,6441	4889,3576
Seção 2	GBTul	65851,0360	4858,4028	4965,4706	4890,2774
	Diferença	0,00%	0,01%	0,02%	0,02%
	Norma	27725,5874	2043,2488	2061,4500	2030,6354
Seção 3	GBTul	27725,6110	2043,2945	2061,5109	2030,7036
	Diferença	0,00%	0,00%	0,00%	0,00%
	Norma	29979,8116	4245,2623	3141,3095	3027,8000
Seção 4	GBTul	29979,9010	4245,3943	3141,4662	3028,0222
	Diferença	0,00%	0,00%	0,00%	0,01%
					1
	Norma	18135,6218	1936,8339	1689,6208	1645,3011
Seção 5	GBTul	18135,6450	1936,8731	1689,6718	1645,3640
	Diferença	0,00%	0,00%	0,00%	0,00%
	Norma	15945,9773	3485,8274	2015,1588	1899,3066
Seção 6	GBTul	15965,7970	3488,1014	2019,0616	1903,3678
	Diferença	0,12%	0,07%	0,19%	0,21%
			I		1
	Norma	23931,2946	3218,2936	2703,9211	2599,0783
Seção 7	GBTul	23931,5570	3218,7296	2704,4589	2599,8079
	Diferença	0,00%	0,01%	0,02%	0,03%
	1				1
	Norma	13350,1272	1793,7756	1468,3432	1412,9573
Seção 8	GBTul	13350,1730	1793,8513	1468,4354	1413,0824
	Diferença	0,00%	0,00%	0,01%	0,01%
	I		I	1	1
	Norma	9838,2191	1245,8789	989,3072	957,5402
Seção 9	GBTul	9838,2391	1245,9102	989,3462	957,5920
	Diferença	0,00%	0,00%	0,00%	0,01%
		1	1	1	1
	Norma	7450,4264	1137,6950	910,5390	868,4752
Seção 10	GBTul	7450,5002	1137,8112	912,1322	870,2604
	Diferenca	0,00%	0,01%	0,17%	0,21%

Tabela 4 – Comparação entre os resultados (Valores em kN)

continua

continuação

		Modo 2	Modo 3	Modo 4	Modos 2 e 4
		N _{ex}	N _{ey}	N _{ez}	N _{exz}
	Norma	4447,7306	678,7694	526,7492	503,3317
Seção 11	GBTul	4447,7465	678,7942	526,7771	503,3730
	Diferença	0,00%	0,00%	0,01%	0,01%
	•				
	Norma	3869,4174	594,2162	493,2795	469,4910
Seção 12	GBTul	3869,4615	594,2860	493,3603	469,6112
	Diferença	0,00%	0,01%	0,02%	0,03%
	Norma	2579,4471	395,8826	314,2272	299,7614
Seção 13	GBTul	2579,4603	395,9033	314,8287	300,3203
	Diferença	0,00%	0,01%	0,19%	0,19%
			_		
	Norma	2325,9716	551,0154	377,0105	347,3990
Seção 14	GBTul	2326,0157	551,0743	379,0537	349,1937
	Diferença	0,00%	0,01%	0,54%	0,52%
	Norma	930,2394	220,2062	135,3670	125,5343
Seção 15	GBTul	930,2423	220,2100	137,2841	127,4611
	Diferença	0,00%	0,00%	1,42%	1,53%
	Norma	1353,0649	221,7474	193,0461	181,8359
Seção 16	GBTul	1353,0753	221,7649	193,7751	182,4920
	Diferença	0,00%	0,01%	0,38%	0,36%
	1	1	1	1	-1
	Norma	803,8729	132,3665	109,1870	102,9837
Seção 17	GBTul	811,8008	132,9845	110,4881	104,3751
	Diferença	0,99%	0,47%	1,19%	1,35%
	1	1	1	1	1
	Norma	1037,9592	286,4181	218,6596	194,7304
Seção 18	GBTul	1037,9944	286,4643	221,1481	196,7549
	Diferença	0,00%	0,02%	1,14%	1,04%
	Norma	415,0643	114,4106	70,6773	64,3839
Seção 19	GBTul	415,0666	114,4135	70,8369	64,5195
	Diferença	0,00%	0,00%	0,23%	0,21%
	N	110.0545	20.2202	22.0506	01.51.65
a ~ a a	Norma	118,0547	29,3203	23,9506	21,5141
Seção 20	GBTul	118,0561	29,3223	24,2037	21,7188
	Diferença	0,00%	0,01%	1,06%	0,95%

4 Resultados

Na Tabela 4 estão apresentados os resultados de força axial de flambagem global em todas as dire-ções, para os 20 perfis exemplos, utilizando as duas propostas de cálculo automatizadas com o algoritmo e a diferença entre os resultados. Pode-se observar que em nenhum caso a diferença foi maior que 1,42%.

A Tabela 5 apresenta a diferença percentual entre os valores de força axial de compressão resistente de cálculo. O principal objetivo aqui é comparar o método de resistência direta como o método pro-posto pela norma, pode-se observar que para os 20 tipos de perfis escolhidos como exemplo a diferença nunca foi maior que 1%.

Na Figura 3 estão apresentados os três modos de flambagem de colunas, observa-se que para comprimento que foi desenvolvido o trabalho (L = 100 cm) a seção 10 desenvolve um modo local e a seção 20 um modo global, como indicado nas contas, como nenhum perfil exibe flambagem distor-cional nesse

comprimento a seção 20 com L = 24 cm foi exemplifica na figura com a identificação desse modo de flambagem. A curva de assinatura (comprimento do perfil por carga crítica) para o perfil 20 também está reproduzida e confirma o aspecto esperado com a literatura quando compara-da com a Figura 2, onde o primeiro mínimo da curva é a carga critica do modo local, o segundo a carga do modo distorcional e por fim o modo global.

5 Discussão

A abordagem proposta para análise se mostrou eficiente uma vez que a comparação entre os resultados obtidos com o algoritmo e com o programa já consolidado se mostraram precisamente iguais, então pode-se afirmar que está validado e que outros variados tipos de perfis podem ser estudados e calculados com o algoritmo. Com base nas diferenças percentuais das Tabelas 4 e 5 pode-se afirmar que o método da resistência direta é uma proposta rápida e fornece esti-

Figura 3 – Modos de Flambagem e curva de assinatura do perfil 20, ambos obtidos com o GBTUL.

	Seção 1	Seção 2	Seção 3	Seção 4	Seção 5	Seção 6	Seção 7	Seção 8	Seção 9	Seção 10
Norma	205,67	523,77	119,19	260,17	121,72	217,26	491,53	192,73	115,66	251,22
MRD	206,69	526,73	119,93	260,61	122,03	217,61	491,54	193,48	116,10	251,31
%	0,49%	0,56%	0,62%	0,17%	0,26%	0,16%	0,00%	0,39%	0,38%	0,04%
	I	1	I		I				1	
	Seção 11	Seção 12	Seção 13	Seção 14	Seção 15	Seção 16	Seção 17	Seção 18	Seção 19	Seção 20
Norma	107,94	175,90	97,26	150,75	41,04	87,23	36,90	105,73	34,94	15,72
MRD	108,19	175,91	97,93	150,97	41,17	87,70	37,02	106,18	34,95	15,87
%	0,23%	0,01%	0,68%	0,15%	0,32%	0,54%	0,32%	0,42%	0,00%	0,95%

Tabela 5 – Força axial de compressão resistente

mativas bastante precisas no caso da compressão de colunas.

Para os perfis adotados como exemplo, observando a tabela 3, tem-se que os perfis 14, 16, 18, 19 e 20 em um comprimento de coluna de 100 cm, apresentam força crítica em um modo de flambagem global e então pode-se afirmar que as colunas formadas com esses perfis apresentarão problemas de flambagem global principalmente, se forem submetidas a cargas superiores as encontradas para N_e na Tabela 3. Todos os outros perfis apresentaram cargas críticas locais e, portanto, sofrerão problemas de flambagem local.

6 Conclusões

O trabalho teve como objetivo apresentar um algoritmo que automatiza a determinação de resistência à compressão de perfis de aço formados a frio segundo as duas recomendações da ABNT-NBR 14762/10 e comparar os dois métodos de dimensionamento. O método da resistência direta (MRD), é considerado como um método alternativo para dimensionamento de colunas sob compressão, consiste em um procedimento simples e confiável para determinar a resistência última e está presente no ANE-XO C da norma, porém é um método que depende de resultados de análise de estabilidade elástica, que só são obtidos com o auxílio de programas prontos e já estão consolidados na literatura, um deles e o utilizado nesse trabalho é o *GBTul*.

Pode-se observar com 20 exemplos de seções que a utilização do algoritmo e a aplicação do MRD propiciou a realização dos cálculos de dimensionamento corretamente, uma vez que a diferença encontrada entre os resultados com as duas abordagens foi irrelevante.

Ao observar o modelo de deformada do perfil em cada modo de flambagem com o *GBTul* comprovouse o modo de flambagem dos cálculos e como esperado, a grande maioria das colunas selecionadas como exemplo apresentam flambagem crítica no modo local e algumas no modo global para um comprimento de 100 cm.

7 Agradecimentos

Ao CNPQ – Conselho Nacional de Desenvolvimento Científico e Tecnológico pelo auxílio financeiro na realização deste projeto.

8 Referências Bibliográficas

ABNT NBR 14762, ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. Dimensionamento de estruturas de aço constituídas por perfis formados a frio – Procedimento. Rio de Janeiro, 2010.

BEBIANO R., PINA P., SILVESTRE N., CAMOTIM D. GBTul 1.0 – **Buckling and Vibration Analysis of Thin-Walled Members**, DECivil/IST, Technical University of Lisbon. (http://www.civil.ist.utl.pt/gbt), 2010.

BEBIANO R., PINA P., SILVESTRE N., CAMOTIM D., Manual user. GBTul 1.0 – Buckling and Vibration Analysis of Thin-Walled Members, DECivil/IST, Technical University of Lisbon, 2010.

CHODRAUI, G. M. B. Análise teórica e experimental de perfis de aço formados a frio submetidos à compressão. São Carlos. Tese de doutorado – Escola de Engenharia de Sao Carlos, Universidade de Sao Paulo, 2006.

GARCIA, R. A. S. Behaviour and DSM design of cold-formed steel web/flange stiffened lipped channel columns experiencing distortional failure. Tese – COOPE UFRJ, Instituto lberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia, Rio de Janeiro, 2016.

HANCOCK, G. J., **Cold-formed steel structures.** Journal of Constructional Steel Research, v. 59, pp. 473-487, 2003.

JAVARONI, C. E. Estruturas de aço: dimensionamento de perfis formados a frio. 1ª Ed. Elsevier Editora Ltda, 2015.

IYENGAR, N. G. R. Structural stability of columns and plates. Affiliated East-West Press, 1986.

SCHAFER, B. W. **Thin-walled column design considering local, distortional and euler buckling.** Proceedings: Structural Stability Research Council – Annual Technical Session and Meeting, 2001.

SILVESTRE, N.; CAMOTIM, D. Towards an Efficient Design Against Distortional Buckling: Formulae for C and Z-Section Cold-Formed Steel Members. Proceedings of Structural Stability Research Council (SSRC) 2004 Annual Stability Conference, Long Beach, pp. 239-263, March 24-27, 2004.

SCHAFER, B. W.; PEKÖZ, T. Computational modeling of cold-formed steel: characterizing geometric im-perfections and residual stresses. Journal of Constructional Steel Research, v. 47, p. 193-210, January, 1998.