Aferição de Performance dos Modelos Simplificados de Tensão Crítica de Flambagem Elástica Local e Distorcional de Perfis U Enrijecidos

Natan Sian das Neves¹

Resumo

A aplicação de perfis formados a frio em projetos e dimensionamento de estruturas torna-se cada vez mais usual na engenharia. Paralelamente, esses tipos de elementos apresentam comportamentos físicos associados aos fenômenos de instabilidade global, local e distorcional. Sendo assim, o presente artigo realiza um estudo inicial acerca da avaliação sistêmica com caráter comparativo entre os modelos analíticos-normativos e métodos avançados computacionais para o cálculo das tensões críticas de flambagem elástica local e distorcional. São realizadas análises paramétricas para uma série comercial de perfis formado a frio de seção do tipo U enrijecido, submetidos à compressão centrada. Para tanto, utiliza-se o modelo de Hancock para tratar efeito de flambagem por distorção, enquanto o fenômeno de flambagem local é descrito pela teoria da estabilidade elástica. Os resultados obtidos com as modelos analíticos são calibrados com o programa GBTul, baseado na formulação da teoria generalizada de vigas, visando verificar as possíveis diferenças quantitativas associadas aos limites de validade dos modelos analíticos.

Palavras-chave: Perfil formado a frio; Modelos analíticos-normativos; Flambagem local e distorcional; Estabilidade.

1 Introdução

As estruturas formadas por perfis formados a frio ganharam intensivo espaço na construção civil devido ao fácil processo de fabricação, resultando em elementos estruturais esbeltos, leves e com baixo custo. Contudo, essas características dos perfis formados a frio não favorecem no ponto de visto da análise e dimensionamento estrutural, uma vez que esses elementos submetidas à compressão possibilitam a ocorrência de fenômenos de instabilidades globais, locais e distorcionais, onde devem ser verificadas durante a elaboração dos projetos dessas estruturas (SCHAFER, 2011).

Para cada tipo de fenômeno de instabilidade tem-se um comportamento físico e um tratamento matemático específico. Sendo assim, a instabilidade local é caracterizada por apresentar na chapa mais esbelta do perfil uma flexão enquanto as demais acompanham a deformação, onde os cantos dobrados da seção não apresentam deformações (PIERIN *et al*, 2013). Além disso, em perfis com seção do tipo U enrijecido, apresentam a ocorrência dos efeitos distorcionais, onde estão associados aos deslocamentos dos cantos dobradas da seção do perfil e a rotação da mesa-enrijecedor em relação ao conjunto alma-mesa, bem como deslocamentos de flexão.

Na instabilidade global, usualmente conhecida na literatura clássica e objeto de estudo nos cursos básicos de engenharia, é caracterizada pelas seções transversais apresentarem deslocamentos de corpo rígido e podem ocorrer por flexão, torção ou flexotorção (CAMPOS, 2019).

Neste contexto, esses fenômenos de instabilidade que ocorrem em elementos de paredes finas devem ser considerados em análises e projetos estruturais. Sendo assim, métodos simplificados ou avançados de cálculo são frequentemente aplicados para investigar os comportamentos desses elementos. Desta forma, o presente artigo objetiva computar os valores da força crítica elástica local e distorcional para uma série de perfís Ue, visando realizar uma comparação quantitativa entre os valores obtidos com os modelos simplificados de cálculo prescritos na ABNT NBR 14762 e com programa computacional GBTul (BEBIANO *et al.*, 2018). A ferramenta computacional GBTul é um programa *free* que visa realizar análises de flambagem elástica (bifurcação) e vibração

¹ COPPE/UFRJ, Programa de Engenharia Civil, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil, Professor da Universidade, natansian@ufrj.br

de membros prismáticos de paredes finas. A base matemática-numérica do programa é fundamentada no método da teoria de viga generalizada (ou *Generalised Beam Theory* – GBT). Esse programa é uma robusta ferramenta para engenharia, possibilitando realizar investigações acerca dos modos de flambagem e a participação modal para análise e dimensionamento de perfis formados a frio.

2 Modelos Simplificados de Cálculo

No decorrer dos procedimentos de cálculo do método da seção efetiva ou método da resistência direta deve-se estimar a tensão crítica de flambagem local elástica para a seção transversal do perfil (JAVARONI, 2015). Essa é usualmente baseada na expressão clássica da literatura para tensão de flambagem elástica de chapa, considerando um coeficiente local calibrado com dados experimentais (TIMOSHENKO; GERE, 2009). Sendo assim, segundo ABNT NBR 14762: 2010 a força axial de flambagem local elástica para um perfil submetido à compressão centrada é dada a seguir:

$$N_{\ell} = k_{\ell} \frac{\pi^2 E}{12(1-\nu^2)} \left(\frac{t}{b_{w}}\right)^2 A$$
 (1)

onde *E* é o módulo de elasticidade, *A* área da seção transversal e *v* é o coeficiente de Poisson. O valor do coeficiente de flambagem local, k_{ℓ} , assume diferentes valores dependendo do tipo de seção estudada. Para uma seção do tipo U enrijecido, assim

$$k_{\ell} = 6,8 - 5,8\beta + 9,2\beta^2 - 6,0\beta^3 \tag{2}$$

onde $b_{\beta} b_{w} b_{s} eD$ são as dimensões nominais dos elementos e $\beta = b_{\beta} / b_{w}$. A equação (2) é válida para o intervalo de

 $0,1 \le \beta \le 1,0$ e $0,1 \le D/b_w \le 0,3$. Em contrapartida, o fenômeno de flambagem distorcional apresenta uma modelagem robusta, não contendo expressões simples e diretas como os casos de flambagem local e global. Sendo assim, Lau e Hancock (1987) desenvolveram um modelo analítico para cálculo da tensão crítica elástica para modo de flambagem distorcional, σ_{dist} . Esse modelo é prescrito na ABNT NBR 14762: 2001 no "Anexo D: Flambagem por distorção da seção transversal". A tensão de flambagem elástica por distorção é modelada pela expressão

$$\sigma_{\text{dist}} = (0,5E / A_d) \left\{ \alpha_1 + \alpha_2 - \left[(\alpha_1 + \alpha_2)^2 - 4\alpha_3 \right]^{0,5} \right\} (3)$$

As propriedades geométricas A_{at} , I_{x} , I_{y} , I_{xy} , C_{w} , h_{x} , h_{y} , x_{o} , e, y_{o} , devem ser calculadas para a seção transversal constituída pelo conjunto mesa-enrijecedor, conforme esquematizado na Figura 1 para uma seção transversal de aço do tipo U enrijecido. Além disso, as variáveis descritas na expressão da tensão de flambagem elástica por distorção são apresentadas nas equações (4) até (10), válidas especificamente para seções transversais do tipo U enrijecido submetidas à compressão uniforme:

$$\alpha_1 = \left(\eta / \beta_1\right) \left(\beta_2 + 0.039I_t L_d^2\right) + k_\phi / \left(\beta_1 \eta E\right) \quad (4)$$

$$\alpha_2 = \eta \left(I_y - 2y_0 \beta_3 / \beta_1 \right) \tag{5}$$

$$\alpha_3 = \eta \left(\alpha_1 I_y - \eta \beta_3^2 / \beta_1 \right) \tag{6}$$

$$\eta = \left(\pi / L_d\right)^2 \tag{7}$$

$$L_{d} = 4.8 \left(\beta_{4} b_{w} / t^{3}\right)^{0.25}$$
(8)

$$\beta_{1} = h_{x}^{2} + (I_{x} + I_{y}) / A_{d}$$
⁽⁹⁾

Figura 1 – Característica do modelo simplificado de Hancock para cálculo da tensão distorcional para perfil Ue.

$$\beta_2 = I_x b_f^2$$
 $\beta_3 = I_{xy} b_f$ $\beta_4 = \beta_2 = I_x b_f^2$ (10)

O coeficiente de mola à rotação, k_{ϕ} , apresentado na equação (11), é função do valor da tensão no qual alma do perfil está solicitada. Quanto mais elevado for o valor da tensão, menor será restrição que ela poderá oferecer para mesa do perfil. Considerando o caso da compressão uniforme admite-se que o perfil de aço está submetido a tensão uniforme, indicando que alma estará solicitada no máximo pela tensão crítica de flambagem distorcional. Desta forma é necessário fazer uma processo simples de iteração para determinar a tensão crítica da flambagem por distorção

$$k_{\phi} = \frac{Et^3}{5,46(b_w + 0,06L_d)} \left[1 - \frac{1,11\sigma_{\text{dist}}^{1^\circ \text{ aprox}}}{Et^2} \left(\frac{b_w^2 L_d}{b_w^2 + L_d^2} \right)^2 \right] (11)$$

Onde $\sigma_{dist}^{1^{\circ} aprox}$ deve ser calculada, em primeira aproximação, pela expressão geral considerando $k_{\circ} = 0$, resultando no coeficiente α_1 igual: $\alpha_1 = \beta_1 = (\eta/\beta_1) (\beta_2 + 0.039 l_t L_d^2)$. As expressões normatizadas para cálculo da tensão de flambagem distorcional contém um intervalo de restrita (SILVA, L.; SILVA, P., 2008), delimitado entre $0.4 < b_f / b_w < 2.0$. Essa limitação é direcionada pela ajuste da expressão do coeficiente de mola à rotação. Ressalta-se que para perfis excedentes desse intervalo restritivo, deve-se empregar métodos avançados de cálculos.

3 Avaliação de Resultados e Discussões

O estudo paramétrico é baseado nas expressões normativas apresentadas nas equações (1) e (3), representativas dos efeitos locais e distorcionais em perfis formados a frio de seção U enrijecida subjeita à compressão centrada. A avaliação da perfomance dos valores normativos são comparados com os valores obtidos de simulações computacionais com programa GBTul v2.0.4.4 (BEBIANO et al., 2018). Desta forma, realiza-se inúmeros testes numéricos com uma série de perfis Ue, descritos na ABNT NBR 6355:2003. A Tabela 1 apresenta as dimensões e razões geométricas dos perfis Ue analisados, bem como os valores das forças axiais elásticas locais N_{ℓ} e distorcionais N_{dist} obtidos com as expressões da norma e no programa GBTul e as diferenças percentuais Δ encontradas nos casos analisados.

Dimensões dos perfis Ue (mm)			Força local, N_ℓ (kN)			Força Distorcional, N (kN)		
$b_{w} x b_{f} x D x t$	bf/b _w	D / b _w	GBTul ¹	Norma ²		GBTul ³	Norma ⁴	
$50 \times 25 \times 10 \times 1,20$	0,5	0,2	82,02	81,71	0,37	97,08	98,68	1,65
$50 \times 25 \times 10 \times 1,50$	0,5	0,2	158,72	159,59	0,55	158,28	160,44	1,36
$50 \times 25 \times 10 \times 2,00$	0,5	0,2	374,42	378,3	1,04	299,86	302,67	0,93
$50 \times 25 \times 10 \times 2,25$	0,5	0,2	531,48	538,63	1,34	389,2	393,74	1,16
$50 \times 25 \times 10 \times 2,65$	0,5	0,2	863,15	880	1,95	565,86	569,43	0,63
$50 \times 25 \times 10 \times 3,00$	0,5	0,2	1244,28	1276,76	2,61	754,98	755,43	0,06
$75 \times 40 \times 15 \times 1,20$	0,53	0,2	55,5	55,61	0,19	90,55	90,31	0,27
$75 \times 40 \times 15 \times 1,50$	0,53	0,2	108,31	108,62	0,28	145,19	145,86	0,46
$75 \times 40 \times 15 \times 2,00$	0,53	0,2	256,25	257,46	0,47	269,71	272,1	0,89
$75 \times 40 \times 15 \times 2,25$	0,53	0,2	364,43	366,58	0,59	348,83	352,03	0,92
$75 \times 40 \times 15 \times 2,65$	0,53	0,2	597,07	598,91	0,31	500,26	504,76	0,9
$75 \times 40 \times 15 \times 3,00$	0,53	0,2	859,92	868,93	1,05	659,92	664,88	0,75
$100 \times 40 \times 17 \times 1,20$	0,4	0,17	37,28	37,22	0,16	82,08	89,12	8,58
$100 \times 40 \times 17 \times 1,50$	0,4	0,17	72,75	72,69	0,08	131,67	143,51	8,99
$100 \times 40 \times 17 \times 2,00$	0,4	0,17	172,13	172,31	0,1	244,93	266,63	8,86
$100 \times 40 \times 17 \times 2,25$	0,4	0,17	247,51	245,34	0,88	316,97	344,34	8,64
$100 \times 40 \times 17 \times 2,65$	0,4	0,17	399,17	400,83	0,41	455	492,5	8,24
$100 \times 40 \times 17 \times 3,00$	0,4	0,17	577,05	581,55	0,78	600,69	647,41	7,78

Tabela 1 – Forças críticas de flambagem local e distorcional.

$100 \times 40 \times 17 \times 3,35$	0,4	0,17	800,86	809,76	1,11	770,86	827,21	7,31
$100 \times 50 \times 17 \times 1,20$	0,5	0,17	39,81	39,83	0,06	81,19	82,03	1,02
$100 \times 50 \times 17 \times 1,50$	0,5	0,17	77,7	77,8	0,13	129,93	132,31	1,83
$100 \times 50 \times 17 \times 2,00$	0,5	0,17	183,9	184,42	0,28	240,75	246,34	2,32
$100 \times 50 \times 17 \times 2,25$	0,5	0,17	262,4	262,58	0,07	310,87	318,43	2,43
$100 \times 50 \times 17 \times 2,65$	0,5	0,17	426,66	429	0,55	445,11	456,03	2,45
$100 \times 50 \times 17 \times 3,00$	0,5	0,17	617,92	622,42	0,73	586,08	600,13	2,4
$100 \times 50 \times 17 \times 3,35$	0,5	0,17	858,63	866,67	0,94	750,84	767,62	2,23
$125 \times 50 \times 17 \times 2,00$	0,4	0,14	133,27	133,47	0,14	210,63	229,26	8,84
$125 \times 50 \times 17 \times 2,25$	0,4	0,14	189,51	190,04	0,27	271,87	296,52	9,07
$125 \times 50 \times 17 \times 2,65$	0,4	0,14	308,88	310,47	0,52	390,85	425,19	8,79
$125 \times 50 \times 17 \times 3,00$	0,4	0,14	447,03	450,45	0,77	516,87	560,32	8,41
$125 \times 50 \times 17 \times 3,35$	0,4	0,14	620,7	627,22	1,05	664,07	717,81	8,09
$125 \times 50 \times 20 \times 3,75$	0,4	0,16	891,59	900,17	0,96	919,01	992,63	8,01
$150 \times 60 \times 20 \times 2,00$	0,4	0,13	110,87	110,94	0,06	200,75	219,49	9,34
$150 \times 60 \times 20 \times 2,25$	0,4	0,13	157,73	157,95	0,14	259,2	283,29	9,29
$150 \times 60 \times 20 \times 2,65$	0,4	0,13	257,34	258,06	0,28	371,15	404,88	9,09
$150 \times 60 \times 20 \times 3,00$	0,4	0,13	372,83	374,41	0,42	488,68	532	8,86
$150 \times 60 \times 20 \times 3,35$	0,4	0,13	518,3	521,34	0,59	626	679,57	8,56
$150 \times 60 \times 20 \times 3,75$	0,4	0,13	725,48	731,27	0,8	808,75	874,64	8,15
$150 \times 60 \times 20 \times 4,25$	0,4	0,13	1051,84	1064,52	1,21	1076,25	1160,49	7,83
$150 \times 60 \times 20 \times 4,75$	0,4	0,13	1461,43	1486,16	1,69	1391,85	1496,04	7,49
$200 \times 75 \times 20 \times 2,00$	0,38	0,1	78,9	78,99	0,11	154,66	171,28	10,75
$200 \times 75 \times 20 \times 2,25$	0,38	0,1	112,5	112,47	0,03	200,16	221,31	10,57
$200 \times 75 \times 25 \times 2,65$	0,38	0,13	188,26	188,46	0,11	335,65	375,5	11,87
$200 \times 75 \times 25 \times 3,00$	0,38	0,13	272,86	273,43	0,21	441,22	491,81	11,47
$200 \times 75 \times 25 \times 3,35$	0,38	0,13	379,51	380,72	0,32	561,42	626,27	11,55
$200 \times 75 \times 25 \times 4,75$	0,38	0,13	1074,8	1085,32	0,98	1233,91	1362,5	10,42
$200 \times 75 \times 30 \times 6,30$	0,38	0,15	2558,91	2595,51	1,43	2555,52	2807,37	9,86
$200 \times 100 \times 25 \times 2,65$	0,5	0,13	205,77	206,25	0,23	322,33	327,56	1,62
$200 \times 100 \times 25 \times 3,00$	0,5	0,13	298,32	299,24	0,31	421,32	429,17	1,86
$200 \times 100 \times 25 \times 3,35$	0,5	0,13	416,02	416,67	0,16	535,65	546,59	2,04
$200 \times 100 \times 25 \times 3,75$	0,5	0,13	581,51	584,45	0,51	686,56	701,06	2,11
$200 \times 100 \times 25 \times 4,25$	0,5	0,13	845,16	850,79	0,67	907	926,14	2,11
$200 \times 100 \times 25 \times 4,75$	0,5	0,13	1272,34	1187,78	6,65	1165,47	1188,78	2
$250 \times 85 \times 25 \times 2,00$	0,34	0,1	62,5	61,5	1,6	145,22	167,23	15,16
$250 \times 85 \times 25 \times 2,25$	0,34	0,1	87,51	87,57	0,07	187,35	215,44	15
$250 \times 85 \times 25 \times 2,65$	0,34	0,1	142,85	143,07	0,16	267,9	307,15	14,65
$250 \times 85 \times 25 \times 3,00$	0,34	0,1	206,98	207,57	0,29	352,34	402,9	14,35
$250 \times 85 \times 25 \times 3,35$	0,34	0,1	287,83	289,03	0,42	450,59	513,96	14,06
$250 \times 85 \times 25 \times 3,75$	0,34	0,1	402,95	405,42	0,61	580,9	660,66	13,73
$250 \times 85 \times 25 \times 4,25$	0,34	0,1	584,7	590,17	0,93	772,95	875,55	13,27
$250 \times 85 \times 25 \times 4,75$	0,34	0,1	813,36	823,93	1,3	999,7	1127,83	12,82
			1000			0106.01	a (a a a a a	10.00

Natan	Sian	das	Neve		

$250\times100\times25\times2{,}65$	0,4	0,1	149,72	149,84	0,08	275,74	297,67	7,95
$250 \times 100 \times 25 \times 3,00$	0,4	0,1	217	217,4	0,19	361,72	390,26	7,89
$250 \times 100 \times 25 \times 3,35$	0,4	0,1	301,78	302,71	0,31	461,54	497,45	7,78
$250\times100\times25\times3,75$	0,4	0,1	422,64	424,61	0,47	593,85	638,79	7,57
$250 \times 100 \times 25 \times 4{,}25$	0,4	0,1	618,71	618,11	0,1	788,01	845,33	7,27
$250 \times 100 \times 25 \times 4{,}75$	0,4	0,1	854,86	862,93	0,94	1016,16	1087,13	6,98
$300 \times 85 \times 25 \times 2,00$	0,28	0,08	48	48,12	0,24	127,98	121,14	5,35
$300 \times 85 \times 25 \times 2,25$	0,28	0,08	68,27	68,51	0,35	163,64	156,46	4,39
$300 \times 85 \times 25 \times 2,65$	0,28	0,08	111,43	111,93	0,45	222,84	224,26	0,63
$300 \times 85 \times 25 \times 3,00$	0,28	0,08	161,31	162,39	0,67	294,74	295,8	0,36
$300 \times 85 \times 25 \times 3,35$	0,28	0,08	224,13	226,12	0,89	390,08	379,66	2,67
$300\times85\times25\times3,75$	0,28	0,08	313,28	317,17	1,24	521,9	491,72	5,78
$300 \times 85 \times 25 \times 4,25$	0,28	0,08	454,04	461,7	1,69	754,41	658,17	12,76
$300\times85\times25\times4,75$	0,28	0,08	630,79	644,58	2,19	931,88	856,53	8,09
$300\times85\times30\times6{,}30$	0,28	0,1	1491,73	1532,82	2,75	1851,63	1961,87	5,95
$300 \times 100 \times 25 \times 2{,}65$	0,33	0,08	116,19	116,49	0,26	249,81	250,21	0,16
$300 \times 100 \times 25 \times 3,00$	0,33	0,08	168,32	169,01	0,41	309,2	328,7	6,31
$300 \times 100 \times 25 \times 3{,}35$	0,33	0,08	235,19	235,34	0,06	406,9	420	3,22
$300 \times 100 \times 25 \times 3{,}75$	0,33	0,08	327,51	330,1	0,79	524,5	540,98	3,14
$300 \times 100 \times 25 \times 4{,}25$	0,33	0,08	661,38	670,87	1,43	931,56	928,6	0,32
$300 \times 100 \times 25 \times 4{,}75$	0,33	0,08	475,33	480,53	1,09	722,76	718,88	0,54

Para facilitar a análise de resultados, realizase uma investigação com auxilio gráfico. A Figura 2 apresenta as comparações entre as curvas com valores obtidos com as expressões normativas e o programa GBTul. Na Figura 2a nota-se que os valores da força axial de flambagem local apresenta pouca dispersão em relação aos resultados via GBTul, onde as oscilações permanecem na faixa máxima $\pm 10\%$. Enquanto, na Figura 2b existe uma maior dispersão na variação dos resultados, com uma oscilação de $\pm 15\%$. Para avaliar o limite de validade do modelo analítico-normativo para força axial de flambagem distorcional, na Figura 3 apresenta a razão b_f/b_w versus erro percentual dos dados numéricos normativos, onde verifica-se altos níveis de erro para uma grande quantidade de perfís Ue com uma razão igual ou inferior a 0,4.

Além disso, na Figura 4 mostra a curva de flambagem por distorção para os testes realizados com modelo normativo, indicando que os valores das

Figura 5 – Exemplos de curvas de assinatura para diferentes perfis Ue e deformação 3D relativo à flambagem local e distorcional do perfil Ue (seção \#83).

Figura 2 – Comparação entre os valores obtidos para as forças críticas (a) locais e (b) distorcionais da série de perfis analisados com base nos modelos normativos e com programa GBTul.

Figura 3 – Verificação do limite validade da expressão normativa relativa à força crítica de flambagem por distorção.

Figura 4 – Valores da força axial de compressão resistente para flambagem distorcional com base no MRD em função da esbeltez distorcional.

esbeltezes para a série de perfis U enrijecidos testado são inferiores a $\lambda_{dist} < 2$.

Em adicional, usualmente no dimensionamento e análise de instabilidade de perfis formado a frio determina-se os valores de carga crítica em função do comprimento do elemento estrutural, essa curva é frequentemente denominada na literatura de curva de assinatura (JAVARONI, 2015). A Figura 5 apresenta a curva de assinatura para os perfis Ue com seção transversal #1 (50x25x10x1,20), #25 ($100 \times 50 \times$ $17 \times 3,00$), #60 ($250 \times 85 \times 25 \times 4,25$) e \#83 ($300 \times$ $100 \times 25 \times 4,75$), conforme detalhado na Tabela 1. Paralelamente, mostra-se para a seção \#83 o elemento estrutural 3D deformado associado ao modo crítico de flambagem local e distorcional.

4 Conclusões

O presente trabalho apresentou uma verificação quantitativa dos modelos analíticos-normativos para cálculo da tensão crítica elástica local e distorcional em perfis formados a frio de seção transversal do tipo U enrijecido. Os resultados indicam que os valores da força de flambagem local apresentam boa correlação com as soluções obtidas com programa GBTul, enquanto os valores encontrados para a força de flambagem distorcional apresentam maiores diferenças. Além disso, observa-se com a série de testes realizados para diferentes dimensões de perfis Ue, que o limite de validade da expressão associado à flambagem distorcional é assertivo, uma vez que grande quantidade de perfis com $b_f/b_w \leq 0,4$ apresentam erros percentuais acima de 3%, indicando uma variação considerável.

Portanto, a força crítica de flambagem local é bem representada pela expressão normativa adotada. Todavia, a força crítica de flambagem distorcional, em inúmeros testes, mesmo não apresentando um excelente ajuste entre as soluções, o modelo simplificado de Hancock fornece valores superiores à solução numérica via GBTul, indicando resultados favoráveis à segurança.

5 Agradecimentos

Ao CNPQ – Conselho Nacional de Desenvolvimento Científico e Tecnológico pelo auxílio financeiro na realização deste projeto.

6 Referências Bibliográficas

ABNT NBR 14762, ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. Dimensionamento de estruturas de aço constituídos por perfis formados a frio - Procedimento. Rio de Janeiro, 2001.

ABNT NBR 14762, ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. Dimensionamento de estruturas de aço constituídos por perfis formados a frio. Rio de Janeiro, 2010.

ABNT NBR 6355, ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. Perfis estruturais de aço formados a frio-Padronização. Rio de Janeiro, 2003.

BEBIANO, R.; CAMOTIM, D.; GONÇALVES, R. Gbtul 2.0 – a second-generation code for the GBT-based buckling and vibration analysis of thin-walled members. Thin-Walled Structures, vol. 124, pp. 235-257, 2018.

CAMPOS, A. I. Comparação entre os métodos de dimensionamento de perfis de aço formados a frio submetidos à compressão de acordo com a NBR 14762: 2010. Engenharia Estudo e Pesquisa, vol. 1, pp. 21-31, 2019.

JAVARONI, C. Estruturas de aço: dimensionamento de perfis formados a frio. Elsevier, 2015

LAU, S. C.; HANCOCK, G. J. Distortional buckling formulas for channel columns. Journal of Structural Engineering, vol. 113, n. 5, pp. 1063-1078, 1987.

PIERIN, I.; SILVA, V. P.; LA ROVERE, H. L. Forças normais e momentos fletores críticos de perfis formados a frio. Revista de Aço, vol. 2, pp. 21-40, 2013.

SCHAFER, B. W. Thin-walled column design considering local, distortional and Euler buckling. In Proceedings: Structural Stability Research Council-Annual Technical Session and Meeting, 2001.

SILVA, E. L.; SILVA, V. P. Dimensionamento de perfis formados a frio conforme NBR 14762 e NBR 6355. Rio de Janeiro: IBS/CBCA, 2008.

TIMOSHENKO, S. P.; GERE, J. M. Theory of elastic stability. Courier Corporation, 2009.